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PI 4 ( V I *  - ql7 = PI 4 (u,3 - %?- 
From the general law, 

P, = p1 RT,. 
P, = pI RT,. 

r T, 
TI 

For P, = P?, p ,  = L. 

pn 

Substituting, 

Hence, Tl ( u12 - u,") = pa (u,? - (1,'). 

T, ( ~ , 2  - ~ 9 ~ ' )  = T L A  (tl.' - (7 0 , ) .  

The relative velocity of one stratum, ( ~ 1 ~ :  - P ~ ~ ) ,  multiplied 
by the temperature of the second, T,, equals the relative 
velocity of the second stratum, ( ~ 1 ~ '  - ~ 1 ~ ' ) ,  multiplied by the 
temperature of the first, T,; and this maintains the pressure 
as i f  the air had no motion, and the temperature gradients 
remained normal. The first type of vortex with the funnel- 
shaped tube depends upon the first principle more than upon 
the second, while the second type of vortex with the dumb- 
bell tube depends upon the second rather than upon the first. 
This will be illustrated by the Chamberlain 2d A, the St. Louis 
tornado, and the De Witte hurricane. The ocean cyclone has 
in addition to these two sources of motion a third, similar to 
the last, but modified by the fact that the boundary of the 
stratification between the cold and warm masses instead of 
being horizontal is vertical in part, as shown by the tempera- 
ture distributions in cyclones and anticyclones up to 10,000 
meters. The land cyclones depend more decidedly upon the 
third source of motion than does the ocean cyclone. 

11.-THE THEORY OF VORTEX MOTION APPLICABLE TO THE 
DUMB-BELL-SHAPED TUBE IN THE COTTAGE CITY WATER- 
SPOUT. 

~ 
THE DUMB-BELL-SHAPED TYPE, COTTAGE CITY WATERSPOUT, CHAMBERLAIN 

2D A. 

An examination of the photographs of the Cottage City 
waterspout given in the MONTHLY WEATHER REVIEN for July, 
1906, pp. 307-315 and Plates I-S, shows that two distinct forms 
of the tube or types of the vortex were developed at  different 
times from the same cloucl. At the second appearance, 1:02 
p. m. to 1:17 p. m. (Plates I-VII), the dumb-bell-shaped type 
prevailed (see Chamberlain's photograph 2d A); ancl a t  the 
third appearance, 1:20 p. m. to 1:27 p. m. (Plates VIII-Y.), 
the funnel-shaped type was exhibited. In  all accessible photo- 
graphs of tornadoes these two types occur quite indifferently 
in numbers, apparently developed by subtle differences in the 
physical conditions of the cloud a t  the several occasions of their 
formation. While both types are of theoretical interest, i t  is 
much more important for the meteorologist to understand the 
dumb-bell type,because the large tornadoes, the hurricanes, and 
the cyclones in part, are constructed upon the same principles, 
differing from one another only in their dimensions and pro- 
portions. Since the ultimate explanation of the motions of 
the atmosphere in cyclones and anticyclones seems to  be very 
closely associated with the theory of dumb-bell vortices, it will 
be proper to keep in mind the goal toward which this present 
exposition tends. 

It can easily be seen in the photographs above referred to, 3cl 
A to 2d G, inclusive (Plates I to VII), that the tube, instead of 
continuing to taper from the cloud to the sea level, reaches a 
minimum diameter more than halfway down from the cloud to 
the sea and then begins to expand. The lower portion is not 
entirely visible, on account of the enveloping cascade of spray, 
and it will be shown in these papers that, in fact, the lowest 
section is not fully developed, and that the vortex tube is 
amputated or truncated by the sea-level snrface a t  from one- 
twentieth to one-third of its theoretical length, according to 
circumstances. The corresponding upper section is fully de- 
veloped a t  the cloud, tho the tube and the cloud merge into 

one another before the asymptotic extension of the vortex is 
reached. When the tube begins to break up, and the gyratory 
velocity diminishes, the dumb-bell form appears more clearly, 
as on 2d F, and it is very distinct on 2d G. I n  the earlier 
numbers of the series, 2d A to 2d E, the inner tubes of the 
complete vortex, which have very great velocities, are formed, 
but the outer tubes appear as the rotation velocity falls in 
amount. 

According to the formulas of the first paper of this series 
(compare Table 3 and Cloud Report, 1898, page 613), we begin 
with the vortex system exprest as follows: 

1 1  m 0, = - = Am2 sin az. 
a 1. Current function. 

2. Radial velocity. 7[=-  am am ~~ - cos az. 
m 82 
a+ 
m 

mi lm 

3. Tangential velocity. u = ~ = d a m  sin az. 

4. Vertical velocity. 10 = !? = 2 A  sin a?. 

APPLICATION O F  THE FORMULAS TO THE COTTAGE CITY WATERSPOUT, 
CHAMBERLAIN 2D A. 

The primary difference between the funnel-shaped and the 
dumb-bell-shaped vortex tube is that the former extends from, 
its asymptotic relation a t  one plane of reference, in the base of 
the cloud, perpendicularly to a great distance from it, taper- 
ing continuously to a tube of very small dimensions, while the 
latter becomes asymptotic to two planes of reference, one in 
the cloucl base and the other a t  os below the surface of the 
sea. Not only is the distance between the two reference 
planes to  be measured in meters, but the axis or connecting 
line is also to be divided into lS0 parts or degrees. Thus, in 
Fig. 3, assume that the upper line is 1200 meters from the 
lower line, that the axis is of the same length, and that this 
represents the entire vortex. I f  this length is taken as 180" 
or parts then the a appearing in the formulas is 

a= ~ - 0.150 [0.17G00], 
1200 - 

which gives the angular change per meter. Since the symmetry 
of the formulas, as controlled by the sine and cosine terms, 
shows that the variations lie between + 1 and - 1, it follows 
that sin a r ancl cos a z will carry the function thru all the inter- 
mediate values. Fig. 3 is constructed by plotting the lines 
determined by the coordinates of Table 17, which gives the 
radii m of the several tubes at  different heights z. 

Since there is no way to determine the value of the tangen- 
tial velocity a t  any given point, i t  is necessary to assume a 
value for u at  a point (m, z ) .  .The correctness of the one adopted 
can be checked by constructing the vortex from these data, 
and comparing it with the shape as shown on the photograph. 
The height z was determined as about 1200 meters by the 
measurements, and after several trials I have taken 

a z = 170° or 100, 
m = 200 meters, 

I' = 
The value a. = 10' is for a point near the sea level, and 
the value a :  = 170" is for a point just below the cloud base. 
Hence we have the current function, 

For the value of the ratio of the successive radii, a t  the points 
separated by 10-millimeter intervals of pressure, as 760, 
750 . . . . . . 690, we shall assume the same value as that given 
on page 169, whose logarithm is, 

2 meters per second. 

= L'CV = 400 [2.60206]. 

log p = 0.20546. 
These data enable us to proceed with the coinputations in 

the regular order, and to develop the entire structure of this 
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0.71679 1 0.51133 

9.58424 1 9.99316 

0.3839 I 0.988!1 

vortex. It is most convenient to compute the values of m, ‘ t i ,  

A, 26, and tu on one selected level, as that for a z  = loo, and 
then to extend the computation to the same quantities on the 
other levels by the use of the formulas 38-49, given in the 
preceding paper of this series. 

FIG. 3.-Vertical section thru the waterspout, showing the relation 
between nand z. The tubes zl and n2 are developed only during the 
time of dissipation of the vortex, and probably tubes 3, and zs are not 
actually developed in this vortex. 

SUMMARY OF T E E  CONSTANTS FOR THE COMPUTATION ON THE PLANE 

az=lOO. 

log U$ = log tlm = 2.60206 

log p = log --= 0.20546 “1 ,  

m. , 

log sin az = log sin 10’ = 9.23967 
log cos az = log cos 10’ = 9.99335 

log a sin az: = log a sin 10’ = 8.41576 
log a cos az = log a cos 10’ = 9.16944 

log u = log 0.150 = 9.17609 
Take the intervals determined by the log p as the points for 
the computation. 

TABLE 13.-The radii of the srccessizre t1orte.c tubes, log aJl+l 
= log a,, - log p = log a,, - 0.2~5~6. 

- ~- ~~ - ~ 

Numlier of line.* 

lug . . . .. . . . . 2.30103 2.09S57 1 1.89011 1.68465 1.47919 I 1.27373 1.06327 I 0.86?81 

CJ ........ 1, 200.(Jl 124.61 77.61 48 .41  30.11 18 .61  1 1 . 7 )  ’7.3 

*The word “lint?” here,aud in rjulwilueot tahles and te s t ,  refers to the numbered lines 
of fistire 3, ahicli represent curved surfaces, bounding successire vortex tubes, taken for 
purposes of computntion. 

- ~. ~ ~~ 

The successive radii on the same plane are found by sub- 
tracting log p = 0.20546 from the values in the preceding col- 
umns. 

TABLE 14.-The tangential velocities, log V , + I  = log .u -1 log p 
= log v + 0.?0546. 

log 7r .......... 0,30103 0.50649 0.711115 0.91741 1.12287 1 . 3 2 8 3  1.53379 1 .7395 

lr ........._ 1 2.01  3.21 5 . 2 1  8 . 3 1  13 .31  i l . 3 1  3111 54.9 

In  forming the log am sin a:, the log p is mbtracted in suc- 
cession, and in forming the log A, 2 log p is added suc- 
cessively. 

To compute the radial velocity I ( ,  and the vertical velocity 
w, the values of log $am and 2A are constructed, and log 
cos a: and log sin K added to them respectively. 

TABLE 16.-The radaul and verticnl vclocities for each v o ~ t e x  tube. 

1 0 L . l I l Z ~  1 06136 1 1.26652 1 1.47228 1 1.67774 1 l.XA320 1 2.0?1966 1 2.28412 1 2.4995s 
1t)g u . .  . , -1.05471 -1.26017 -1.46563 -1.67109 -1. 57655 -2.08’201 -2.2674; -2,49293 

I , .  . . . - 11.34 - 18.20 - 29.22 - 46.89 - 75.26 - 120.79 - 1!13.35 - 311.13 

log 2.4.. 9.88327 0.29619 0.70711 1.11603 1.?2895 1.93987 2.35079 2.76171 
log w . .  w...I 9.13494 0 . 1 3 1  

9.53586 O . : H ~  
9.!14678 0 .831  0,35770 2.281 0. r6362 5.871 1.17954 15.121 

1.59016 x g 5 1  2.00138 100.32 

Having computed the value of log tt under the radius m,, 
the others are found by adding log p ;  and the successive val- 
ues of log 117  are obtained by adding 2 log I)  to  the several 
values in succession. Since the axis of 3 is positive upward, 
the iuoveinent of the air in the waterapout is continuously 
positive and therefore upward; the motion of the radial 
velocity is inward in the lower half of the vortex, but out- 
wart1 in the upper half of it. 

Having thus found the values of log m, log I / ,  log (7, and 
log io on a given plane of the vortex (in this case the plane 
which passes thru the point on the axis corresponding to 
az=lOO), it is proper next to  extend the computation to other 
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o;=oo 
I0 
:(o 
.50 
70 
90 

110 
130 

-m 
9.12494 1 :.I3 
9.58.m 0.38 
9.769s: 0.58 
9.85626 0.72 
9.8R52i 0.77 
9.8582ti 0.72 ~ 

9.769.5'2 0 58 

0.99 
1.52 
1. 86 
1.98 
1.86 

2.54 
3.90 
4.79 
5.10 
4.79 

87.07 

66.70 
43.54 
15.13 

~ 1 . 8 2  

0 

224.28 677.71 

171 81 442.65 
112: 14  1 288.86 

3;94 I 100.33 

210.76 542.88 

0 

3 3  
3.5 
3 8  
4 8  
5 2  
i . 3  

33 

:io 
69 

_ _ ~  
Altitude. logs 1 2 3 

n;.=OQ -1.06136 -11.5'2 -IS. 49 -29.67 
10 -I. 05471 -11.34 -18.20 -29.22 
30 4 . 9 9 8 8 9  - 9.Y7 -16.01 -25.69 
50 -0.8fi943 - 7.40 -11.68 -18.07 
70 -0.59541 - 3.94 - 6.32 -10.15 
an _- n n n 

4 5 6 S 

-47. fil -76. 42 -122.65 -1%. 83 -31.5. P2 
4 6 . 8 9  -75.26 -EO. 78 -193.85 -SIl. 12 
-41.24 -66.18 -106.E -1i0.47 -273.59 
-30.61 4 9 . 1 2  - 78.84 -126.53 -2113.0i 
-16.28 -26.14 - 41.95 - 6i. 32 l-I(lb. 05 

n n n 1) n "" 
110 
130 
150 
170 
180 

0.59% 3.94 6.32 10.15 1 6 . ~ 1  26.14 4i .95 67.32 i o i o a  
0.86Y43 7.40 11.39 19.07 30.M 49.12 78.84 126.53 203.07 
0.99889 9.97 16.01 25.69 41.24 f6. 18 106.22 170.47 3 3 .  59 
1.05471 11.34 18.20 29.22 46.89 ~ 5 . 2 6  120.78 113.85 311.12 
1.06136 11.53 18.49 29.67 47.61 76.42 I 122.65 196.83 315.92 

planes by employing the other values of sin a8 and cos az as 
required. In order to exhibit the amount of work needed to 
compute these terms for 10-degree intervals in a vertical di- 
rection, and for the stated intervals in a horizontal direction, 
the computations for log rn and m are given in full, those 
for $1, 'ti, and w requiring similar tables. 
TABLE 17. - Computation of log TJ and m for each tube at cFuccem4re nltatudee. 

Values of loa m. 

0 
5.87 

16.90 
25.89 
31.76 
33. 80 
31.76 
25.89 

10.05 
12.33 
13.12 
12.33 
10.05 
6.56 1 
2. 28 
0 

I 

The radial velocity reverses direction a t  nz=90°; it is very 
large in the inner tubes, increasing toward the axis. The tan- 
gential relocity is right-handed for upward velocities, so that u 
am1 zir are both positive for an axis drawn as in fig. 3. The 
eiiormous velocities which are developed near the axis, especi- 
ally the vertical velocity, show where the destructive forces 
reside that are associated with tornadoes and waterspouts. 
The hurricane also will develop velocities of a very high order. . 
It is cluite probable that the tubes under (l), (a ) ,  (7), and (8) 
did not develop in the vortex of the Cottage City waterspout, 
tho covered by the computation, which extends beyond the 
probable limits. 

THE HORIZONTAL ANGLE i AND THE VERTIC~AL ANGLE 7 OF THE 

As the angles of referenqe of the current, whose total velocity 
is q ( u ,  1 1 ,  zu) a t  the point (m, q, z ) ,  we have taken i and 7 ;  i is 
the angle between the tangent to the circle whose radius is m 
and the horizontal component 6, positive outward; +I is the 
angle between G and q, being the projection of q on the 
horizontal plane. (See fig. 4.) 

CURRENT 4 I N  T H E  VORTES. 

2.09557 
I. 94888 
1.86591 
1.81137 
1. i7328 
1.74664 
1.72S81 
1.71873 
1.71510 

10 
20 
30 
40 
50 
60 
70 
80 
90 

1.60591 1 lAOlJ4.5 I 1. 1949tl 1 11.9SY53 1 0.78407 1 0.57861 

I , , 
Values of the radius a for each tube and altitucitr. 
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34.3 
28.6 
25.1 

21.6 
20. Y 
20. 3 
211. 2 
YU. :: 
20. 9 
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w, 
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~ 
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~ 

La 
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21.5 
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15. 7 
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~ 

Altitude. 1 3 6 7 

0 
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60 
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90 

1(JO 
110 
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' l i 0  
1 BO 

50 

m 
77.6 
55.3 
45.8 
40.4 
3;. 0 
34. 8 
33. 4 
32. li 
32. 4 
:12.6 
33. 4 
34.8 
37. 0 
40. 4 
45. s 
55.3 
, , . I 5  -- 
n. 

m 
1s. 8 
13. 4 
11. 1 
9. h 
8. !I 
s. 4 
8. 1 
i. 9 
7. s 
7. 9 
8. 1 
8. 4 
8.3 
9 .8  

11.1 
13.4 
IS. S 
7. 

00 

11. 7 
s. 3 
6.9 
6. I 
5. 6 
5.2 
5. 0 
4.9 
4. Y 
4.9 
5. (I 
5.2 
5. B 
6.1 
6.9 
8.3 

11. 7 
m 

"00.0 
142.5 
117.9 
103.9 
95.2 
SY. li 
86.0 
84.0 
83.3 
84.0 
R6.0 
R9.6 
95.3 

117.9 
142.5 

in:<. 9 

201). n 
u2 

C&Z = /BO' 

TABLE lO.-The tangential velocitiee I!  for  each tube nnd altitude. 
FIG. 4.-Relations of the angles ctz and .i in the dumb-bell vortex. 

0 
2. M 
5.76 
8. 39 

10.61 
11.53 
10. 82 
8. Y2 
5. 76 
2.00 
0 

ao=!)Oo + i 
tan i L', constant on any plane a:. 

I' 

u' 
tan 7 - ~ 

\ increases from nz=Oo to nz=9O0 and from os1 
' - I ?  sec i / toward the axis. 

(Compare fig. 1, page 164.) 

U F O 0  - w  
10 0.20103 
30 I 0. rE033 
50 1 0.Y4561 

1.03435 
1.06136 
1.03435 

150 1 0.16033 
170 0.30103 
180 ~ - -OD 
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10 .......... 
20 ........ . 
30 _.... .... . 
40 . _... .. .. . 

The horizontal angle i is directed inward from az=Oo to  
This angle i az=90°, and outward from as=90° to az=180°. 

is computed from 
U 

2) 
tan i=- , 

-80 
-70 
-60 
-50 

from the plane of reference, which produces the angles ob- 
served in cyclones and hurricanes, rather than the friction kt, 
the defleoting force 1, and the vertical constant c, as was as- 
sumed by Ferrel and the German writers in their studies of 
the problem. We have, therefore, in practise only to measure 
the velocity and angle of inflow on a given plane, as the land 
or the sea level, truncate the theoretical vortex a t  the corre- 
sponding plane, and proceed to develop the velocities and 
angles thruout the entire vortex to the cloud level where it 
is actually generated. 

The angle 
q increases from az=Oo to az=90°, and it decreases from 
az=90° to uz=180°; the angle increases from the outer line 
toward the axis, and .in the middle of the vortex on the plane 
as=90° at  line 8 it may reach about 61". The sec i can not 
be neglected in this computation, as the angle i is of all values 
from 0" to 90". 

The angle q is positive from m = O 0  to az=18O0. 

The total velocity can be computed from the formulas, 
q=( t s '+  U~+ID') ; ,  or 
q= v sec i sec 7. 

TABLE 23.- !l'he total velocity q, in n~eter8 per second. 

50 .......... 
60 ..... .. .. . 
70 ......... . 
80 ......... . 
90 .......... 

and it is constant on the same plane uz. 

TABLE 21.- The horizontal angk ,i, negative inward, positive outward. 

4 0  
-30 
-20 
-10 
- 0  

! 1 1 2 1 3 1 4 1 5 1 6 ! 7 ! 8  Height by angular 
measure. 

Height 11y 

measure. 
angular 

0 0 

n:=lRO 0 
170 10 
160 20 
150 30 
140 40 
130 50 
120 60 
110 70 
100 80 

1,- 
00 .......... -90 

1 

0 1  

0 0 
0 40 
1 18 
1 55 
2 27 
2 55 
3 18 
3 35 
3 45 

4 

0 ,  

0 0  
2 44 
5 23 
7 51 

10 3 
11 55 
13 25 
14 31 
15 11 

az=180° 
170 
160 
160 
140 
130 
120 
110 
100 
90 

5 

0 ,  

0 0  
4 24 
8 36 

12 28 
15 52 
18 43 
20 58 
22 34 
21 32 

6 

0 ,  

0 0  
7 2 

13 39 
19 33 
24 32 
28 32 
31 36 
33 43 
34 57 
35 22 

7 

~ _ _  
" I  

0 0  
11 11 
21 17 
29 40 
36 13 
41 11 
44 37 
46 57 
48 18 
48 44 
__ 

The angle i is negative from ac=Oo to az=9O0 and positive 

The stream lines are directed toward the axis on the lower 
from az=90" to az=180°. 

oz=90° 16461.5 16451.5 I 16451.5 16451.5 16451.5 16451.5 1 16451.5 

- ~~ 

asymptotic plane, and gradually incline from the radius as the Height by 

(50) az=90°+i or i=az-90°. ~ 

When nz=90° the angle i=Oo,  and tbe current is parallel o 0 

to the circle described by the radius m, but from that level "==;R 
to az=18O0, i is positive and becomes 90° for az=180°, that is, 160 20 

on the upper asymptotic plane a t  the base of the cloud. It 1-10 .u) 

follows that the angle i can be inferred from the height az :E t' 
above the lower plane, or from measured values of the angle i 110 70 

as the sea level, the currents of wind are observed to flow into ~ 

height, measured by the angle az, increases, so that 
mearure. angular 

150 30 

100 80 the height az can be immediately found. If on a given plane, 90 90 

~ 

2 

~ ~ _ _ _  

18.49 
1% 49 
18.50 
18. 51 
18.53 
18. 56 
18.56 
18.58 
18.59 
I S .  59 

~ 

~- 

I 

__ 

11.52 
11.52 
11.62 
11. .52 
11.53 
11.53 
11.54 
11.54 
11.54 
11.54 

3 

29.87 
29.68 
29. 72 
2Y. 78 
29.85 
29.92 
30.00 
30.05 
30.09 
30.10 

5 

76.42 
16.64 
77.29 
78.26 
79.45 
80.69 
81.84 
82.75 
83.35 
83.56 

47.61 
47.62 
47.83 
48.07 

48.66 
48.95 
49.18 
49.34 
49.39 

48.36 134.82 I 243.98 I 487.61 

a vortex at  a certain angle, i, measured from the tangent, or a t  
the angle az measured from the radius, it follows that the 
vortex is truncated by the sea level on that plane, and that 

vortex. this being the Plane at  which the Complete vortex has 

~h~ visible , ,rtex, --3 i t  de elops 
ably confined within the lines 3, 4 
tending a little beyond 

passes upward thru each vortex tube, is computed from the 
the truncating plane can thus be drawn thru a theoretical ~1~~ volume of air v, 6: 1n cubic meters per second, which 

1 the t..mosphere, is prob- 
5 ,  and 6, tho possibly ex- 

been cut off by r';tating against the surface o i  the sea. 
W 

TABLE 22.- !l'he vertical angle 71, tan 7 = vseci. 

formula, 

I(,,,, being the mean velocity, au obtained by the formula, 
V =  x (m,: - os,,+;) zu,, = a constant, 

~ 

8 log I U ,  = 4 (log ZL',, + log 

~ 

0 0 Tables 17 and 20. 

The value of V i s  computed for three levels, and the result 
is given in Table 24, taking the values of log m and log w from 

TABLE 24.- The volume of air nacendang in each vortex tube. 

, 
17 37 
32 1 
42 26 
49 37 ~~ 

- 
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@ I  

0 0  
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4 41 
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6 18 
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9 36 
9 45 

64 29 
57 44 Height 
53 48 of stratmn. 
60 57 ~ ~ 

7-8 4-5 I 5-6 I 6-7 ' 3-4 

-~ - _ ~ _ _ _ _ ~  
c ,  on 

It will be shown that cyclones, hurricanes, and tornadoes 
develop a t  the upper plane and 'extend downward toward the 
surface, the lower portion of the vortex being destroyed in 
the working of the tube against the sea or the land surface. 
Thus in the cyclones the central plane for az=9O0 is in the 
strato-cumulus level, where the angle az is about 50° or GO", 
making i =  -40" or -30°, which is the angle usually meas- 
ured on the inflowing current. In  the hurricane the central 
plane is somewhat higher, while in the Cottage City water- 
spout it is about 80" above the sea level, making the inflowing 
current a t  the bottom of the cascade construct an angle of 10' 
from the radius. It is such an action of the dumb-bell vortex 
in developing the angles in this manner, with the inflowing 
angle constant on a given plane, and proportional to the height 

64-6 

In  the funnel-shaped vortex it was found that the volume of 
ascending air was 2467.7 cubic meters per second, so that the 
dnnib-bell vortex is carrying 6.666 times as milch air uprourd a8 the 

froinel-shaped uortex. It may be inferred that the change from 
one type of vortex to the other is due to the requirements of 
the temperature conditions at  the cloud, the greater changes 
due to  the overflowing cold sheet demanding a stronger upflow 
in the dumb-bell vortex, the smaller changes in temperature in 
the horizontal sheet being satisfied by the feebler action of 
the funnel-shaped vortex. This becomes equivalent to the 
statement that a t  the immediate base of the cloud the hori- 
zontal velocity u is stronger in the dumb-bell vortex than in 
the funnel-shaped vortex. 
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__ A? ~ 1 1.22308 
a' ' 8.35218 
m 1.78735 
COS' N: 9.98670 

EVALUATION O F  THE EQUATIONS O F  MOTION. 

In the future chapters we shall fully consider all the forces and conditione that appreciably affect vortex motions, but for 
the present we shall consider only the simplified equations of motion that apply to the case of no inertia, no friction, and no 
deflecting force. In this case the equations of motion of a vortex (see No. (6) ,  page 465, or Cloud Report, 1898, page 504, 
equation 200, and page 502, equation 180) become, 

d 71 du I P  
= I 1  -+ I / ? - - -  

dP 
pdm d m  dz m '  

I 
I 

I 

The partial differentials of the veIocity in the direction of the radius r r ~  and the vertical z can be computed in terius of 
the constants of the vortes, from the equation for the current function, 

+ = A m' sin nz. 

Thus we find the partial differentials of the velocities as follows: 
11 = - d a cn cos a:. 1 3  = d n rn sin n - .  

d U  
~ = ,I n sin 11:. 

(51) Om ij irr 

i l l]  -- - d a? m sin nz. 3: 3 :  
~- - d n2 ,?j cos I!:. 

22.35 I 1.34934 

The products of these quantities are then formed as follows: 
i l l /  

711 ~ = 2 8' 17' m sin' 0-7. 
B 11 I 11 - = A' az ill cos9 0,:. I dm r3z 

log ?* lo . .  
VW..  

1',0..  
vpc. . 

l og?qo . .  
wz0. 

u ? , ~ .  . 
u3.. 

l I  I' 
~- - d'a?cnsinn?cosn:. 
m 

U? I -- = A' a' m sin'ii:. 
I "  

Hence, the three equations of motion as above given reduce to, 
i) P 

p i) m 

i, P 
p il: 

(1) - ~ -= A2U2 m. 

(2) 
I An example of the practical working of these ecluations may 

be taken from the data of the preceding tables, which are 
collected for convenience in Table 25. The point selected is 
on t,he level n:=lOO and between the radii n3 and mr, intend- 
ing to integrate across the tube m3-mr a t  the level a:=lOO 
and vertically thru this point from ai=5O t,o az=15°. 

The interpolations are to be made at  the middle point of 
the tube (n3- m+) and on the plane a:=lOO. 

The arrangement of the colllputations for each side of each 
equation (thus checking the theory from two points of view) 

0 = o .  
\ 

1 
(53) 

(3) - ~ = g + 4 A' ii sin ai cos a:. 

The second equation reduces to zero. 

AN ESAMPLE. 

TABLE 25-Collection of the dnta for  an erninple in contputing the equations 
of motion for any special rrtdiua m a d  leael a;. 

__ 

0.30103 
0.59541 

2.00 
3.94 

9.12494 
9.419X2 

0.13 
0.26 

I -  
log A .  . . 9.54434 

-4 . . . .I 0.38.19 

log Zl". 2.30103 
Z.0. 2.15384 

log 7410. . -1.054i1 
~ 2 0 .  . -1,03435 

-11.34 
-10.82 

2 

9.9951 6 
0.9889 

2 09557 
1. !I48358 

124.6 
88.8 

-1.26017 
-1.239Sl 

-18.20 
-17.37 

0.50619 
0.80087 

3.21 
6.32 

9.535586 
9.83034 

n. 34 
0.68 

3 

0.41609 
2.5473 

1.89011 
1.7.1292 

77.6 
55. 3 

-1.46563 
-1. 4452i 

-29. R' 
-27. 88 

0.71195 
1.00633 

5. 15 
10.15 

I). 94678 
0.24116 

0.84 
1. 74 

4 

0. 81700 
6.6614 

1.6Mii5 
1.5::746 

4>.4 
34.3 

-1.67109 
1. 651J73 

-46.89 
-G. 74 

0.91i41 
1.21 I79 

8.27 
16.29 

0.35770 
0. Ii52llS 

2. 28 
4. 49 

5 

1.22792 
16.9010 

1.4i!l19 
1.33200 

30. 1 
21. 5 

-1. 97655 
-1.8.619 

-75.26 
-71.81 

1.12287 
1.41725 

13.27 
26.14 

0. 768li2 
I .  ll6300 

5. S i  
11.56 

F 

I. 634% 
43.5350 

1.2i373 
1.12654 

18.8 
13. 4 

-2OR2I)I 
-9.06165 

-1%. 78 
-115.35 

1.32833 
1.62271 

21.30 
41.95 

1.1;954 
1.4::392 

In. I:! 
3 . 7 9  

2.049i6 
112.140 

1,06827 
0.921n9 

11. 7 
8.3 

-2.28747 
-2.2671 1 

-193.85 
-194.93 

1.53379 
1. S281i 

34.18 
6i. 32 

I .  591146 
1.8584S4 

3s. 94 
76. il 

is as follows: 
_ _ ~  

2. 46068 
288. 85:: 

0. BG'SI 
0.71 562 

7.3 
5.2 

-2.4CJ5 
-2.4725; 

-311.12 
-296. R6 

1.73!4'5 
2.03363 

54.86 
1119.05 

2.0013s 
2.29576 

]no. 32 
197.59 

Left-hand term. 1 1  Right-hand term. 
I 1  

Term. I Number. 1 Logarithm. I I Term. 
I ! 1 

Logarithm. 

-37.01 
-17.67 + an. 20 

22.40 

-1.56836 
- 1.24724 

1.46528 
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?",I, 1.42 ' 
i) 1 0  1.404 
i ! z  1. lG36 
deer 
i) 7 

1. 713 I ( ' - -  

- 

0. 15234 ~ dil'a 1.00123 
0. 14737 sin az 9. 23967 
0. 06579 cos ar 9.99335 

0. 23382 1. $15 0. 23425 
~- -- 

~~ 

-1. 56836 
0.49415 
1. 46538 

-0. 59713 
__- 

--B?n'm 1 -1. 36264 
sin m I 9. 23967 
cos 0: ~ 9. 99335 

I 

-3. 943 I?' 

V? 

IT 

~ 

m 

43.59 1. (38936 A'ii'm 1. 36264 
sin' m 8.47934 61. a9 1.78738 

0.695 9. 64198 0. 695 9.81198 
-- 

U 
#' 
m 

11 u 
m 
- 

- _~ 

-37. 01 -1. 56836 -A' f i lm -1. 36264 
6. 526 0. 81466 sin a: 9. 23967 

61. 29 1. 78738 cos az 9.99335 

-3. 941 -0. 59566 -:3. 941 -0. 59566 
-- ______ 

Term. Logarithm. 

0.15334 
0. 05690 

2 
f12 fl?m 
sin' az 

1.390 

0. 30103 
1. 3626-1 
8.47934 

0.14301 
-__ 

1. 42 0. 15324 
6.452 0. 80969 
1.1636 0.06579 

-___ 

2 A'ci'm 1. 66367 
sin az 9. 23967 
cos ax 9.99335 
-~ 

7.873 0. 89614 11 7. 883 0. 89669 

0 111 

ax i~ =4 A' a sin ax cos a:. 

Left-hand terms. Right-hand terms. 

Term. Number. Logarithm. 11 Term. kogarithm. 
- 1  --I/ 

-37.01 
+ 3.12 
+29. 20 

il u 
i)  m 

11 - ~ -3.955 

-37. 01 
+ 1.40 
+29. 20 

-1. 56836 
0. 14613 11. .  . . . . . 
1. 46538 I 

0 

il 11' 

r) m 
This discrepancy results from the fact that T-- has a value 

-0.05, slightly larger than 0. 
29m - 

In  evaluating the partial differentials in the direction of the 
angular coordinate az, the factor 57O.2'3578 must be intro- 
duced into the terms for partial differential, as this is the 
number of degrees in one radius. Since the angular distance 
is 160 degrees and the linear distance 1200 meters, the 10- 
degree interval is equivalent to 

-1.1636, i) r=lO-degree interval= ~ . - 1200 
18 57.29578 

which is the value of r7s in the partial differentials. 
r3 1( 

i) z 
it' ~ = 2 A' a'm sin' a:. 

Left-hand terhs. 

Term. 1 Number. I Logarithm. ~ 

I ll 

+l. 42 
1. 14 
1.1636 (equation 53), 

- B'a'm, 
OP 

,IO m 

and gives the results found in Table 26. 
TABLE %.-Fall in pressure betiivm the succeseive eortea: r 

1. 391 

P - 
7-8 

6732.3 

4.4 

1.2682 

37563. 

281.7 
. -- 

__ 

2-3 

~ 

1-2 

~ 

3-4 1-5 
_ _  - .  

95.2s 

18.3 

1.2692 

5211.3 

16.58 

6-6 

393.91 

11.3 

1.2662 

5645.0 

42,34 

b 7  

1.349 

75. 4 

1.2682 

126.0 

0. 94 
~ 

23.05 

3 . 2  

1.2682 

853.5 

6.40 

1628.5 

7.1 

1.2682 

14663. 

110.0 

5.5i5 

47.0 

1.2662 

332.3 

3 49 
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When a waterspout descends to sea level it is equivalent to 
assuming that the pressure falls a t  the core by the amount of 
the computed difference in pressure between the sea level and 
the base of the cumulus cloud, or, indhis case, 91 millimeters. 
Starting from the assume$ outer ring (3), we compute the 
difference of the barometric pressure, 6.40 + 16.58 + 42.34 
+ 26.00 =91.32 millimeters. Rence, it follows that the calm 
core is to be limited at  about 16 meters, as  can be seen 
by comparing Table 26 with the radii us of the rings in 
Table 26, since the 26.00 millimeters of pressure must be dis- 
tributed beyond m6 in the direction of m,. 

The photographs, Chamberlain 2d A in particular, show 
that the bottom of the tube near the ocean is surrounded by 
a vaporous mass of rounded form, which I have analyzed as 
follows: The vortex tube approaches the sea level with vio- 
lent radial, tangential and vertical components of velocity, 
sharply separated from the quiet air surrounding it, a t  the 
outermost layer of the revolving vortex. Were there no 
ocean or obstacle to disturb the vortex motion, and were the 
tube to form in a frictionless medium, the tube would estend 
to the asymptote a t  a given distance, leaving a small calm 
core free from gyration. But in fact the tube encounters 
the waters of the ocean, and becomes distorted by the action 
of the conflicting forces. The most prominent effect is the 
change in the size of the tube, and the decrease of gyratory ve- 
locity in consequence of friction and the other forces, caused by 
the transfer of the energy of the tube to the masses of air and 
water, wherein the forces of inertia are very large, since quiet 
air and water are suddenly set in violent motion on meeting 
the vortex. The intake of the vortex, due to the strong 
ascending helical motion, requires a supply of air which 
enters the tube by curved paths, as shown on the photograph 
by the clear spaces near the surface of the ocean. The water 
itself leaps up a few feet at the center into a point, or conical 
wave, and a sharp measure of this distance is desirable as 
the pressure-fall in the center of the tube can be estimated 
from it. The circular rotation of the tube at  the surface cuts 
up the water into drops of spray, which are drawn into the 
tube, together with the air moving toward the axis. 

At  a certain height above the surface where the intake has 
become satisfied, and there are only sinall radial components 
setting inward, the water and spray are thrownby the cen- 
trifugal and deflecting forces outward from the tube a t  the 
height of about 110 meters. This mass of air and water in- 
side the tube is gyrating violently, but on being ejected from 
the tube it impinges upon the quiet air and loses its projec- 
tile energy upward and outward, so that it falls back to the 
ocean in a cascade. The falling spray is again sucked into 
the tube on approaching the levels where the intake begins, 
and the orbital rotation may be thus repeated more than 
once. It is evident that there is a series of beautiful me- 
chanical problems in this connection, but it is not easy to 
treat them fully, because the size of the drops, the action of 
viscosity on the velocity, and the velocity components them- 
selves are not fully known. Since the formulas for the vor- 
tex apply to media without friction and to parabolic trajec- 
tories, it. is difficult to modify them to meet the actual atmos- 
pheric conditions. There is evidently a right-hand and a left- 
hand trajectory, so that the origin of coordinates (:7:, z )  can be 
taken a t  the axis of the vortex as i t  touches the water; x is 
along the surface, and 2 is perpendicular to it along the axis 
of the tube. I have written down the formulas for the para- 
bolic trajectories, which can be readily understood from fig. 5. 

Some computations of. a parabola thru the points (z =0, 
zl=O) and (z1=56, z,=128) show that this parabolais too sharp 
near the vortex for the trajectory of the spray, and accord- 
ingly some other curves have been sketched in, showing the 
boundary of the water cascade, and some arrows indicating 

THE CMCADE OF T H E  COTTAGE CITY WATERSPOUT. 

the paths of the water drops, the spray and the air, which seem 
to conform to the design on Chamberlain's photograph. To 
pass from the pure parabola to the actual paths of the water 
and spray masses is probably quite impracticable by mathe- 
matical analysis, till we know more of the size of the water 
masses, the viscosity, and the actual velocities in the several 
parts of the .disturbed tube, especially in the stream lines 
near the surface where the vortex forces are seriously dis- 
turbed by composition with the inflowing masses, suddenly 
changed from rest into violent motion. It is evident that all 
waterspouts and tornadoes will suck in objects near the sur- 
face,'and discharge them into the quiet air a few hundred 
feet above the surface, when they will fall again. 

+x 

FIG. 5.- Circulation of air and water in cascade. Heaviest full lime, vor- 
t e s  tube. Middle full lines, parabolic trajectories. Lightest full Hnes, 
water cone. Dotted ovals, paths of water drops in cascade. Arrows, 
direction of circulation. Height of cascade = 128 meters. Diameter 
of cascade r 220 meters. 

TABLE 27.-Farnrula.a f o r  parabola. 

~ 2 1:' -4 B = ut. 
AB? = p y .  AHP= - . AD.  

Diameter of vortex tube = 74 meters. 

BC = $st'. g 
A F  = A E = h .  U? = 2yh. 
FH = G H .  __ 
EAR= BAF. A B ' =  4 h .  AD. 

TABLE 2S.-Epntiona of pnrcrbola. 

1; si; a .  1- origin at  A .  

RA L = a. 

d K = .C = COS 0 . 
BAr = 

Ch'= z =  vtsina-$ggt'. 

: = .I: tan a - 

z = .I' tan r1 - 

B C =  z y t  

Pa2 
2 1"cos'fl 

4 A COB2 N 
. c 

TABLE SS.-Foriiiula.a for the aqigle a,  height h, uittl velocity v (in vacuo) 
of a pambol~c thru (x1zl), (.z2=! j .  

.c I' 1 
4 h co+ . i 

X l z  I 
4 h  c 0 s 2 a  1 

:, = .T~ tan 11 - 

z 2  = LP, tan a - 
} origin at  0. 

Range A M =  4 h cos a sin a = 2 h, sin 2 a. I 
4 11 sin u 3 I ?  sin a i 

Time of flight = t = - ~ - - -~ origin at  -4. 
u 9 

j Greatest height = HL = h sin' u. 


